Objective
"From cell biology to polymer photovoltaics, (self-)assembly processes that give rise to morphology and functionality result from non-equilibrium processes, which are driven by both, external forces, such as flow due to pressure gradients, inserting energy, or manipulation on a local molecular level, or internal forces, such as relaxation into a state of lower free energy. The resulting material is arrested in a metastable state. Most previous work has focused on the relationship between structure and properties, while insight into the guiding principles governing the formation of a (new) material, has been lacking. However, a comprehensive molecular level understanding of non-equilibrium assembly would allow for control and manipulation of material processes and their resulting properties. This lag of knowledge can be traced to the formidable challenge in obtaining a molecular picture of non-equilibrium assembly. Non-equilibrium processes have been studied extensively on a macroscopic level by non-equilibrium thermodynamics. We take a novel route approaching the challenge from a molecular point of view. Recent advances in experimental, but especially computational modeling, now allow to follow (supra-) molecular structural evolution across the range of length and time scales necessary to comprehend, and ultimately control and manipulate macroscopic functional properties of soft matter at the molecular level. Soft matter is particularly suited for that approach, as it is “slow” and easy to manipulate. We take the computational physics route, based on simulations on different levels of resolution (all atom, coarse grained, continuum) in combination with recent multiscale and adaptive resolution techniques. This work will initiate the way towards a paradigm change from conventional Structure Property Relations (SPR) to molecularly based Structure Process Property Relations (SPPR)."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences thermodynamics
- natural sciences physical sciences condensed matter physics soft matter physics
- natural sciences biological sciences cell biology
- natural sciences chemical sciences polymer sciences
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-ADG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.