Objective
The field of quantum dots (QDs) is one of the major growth areas in interdisciplinary field of physics, materials, chemistry, and engineering for the exploration of fundamental physical properties and potential/new functionalities. This will serve as a basis for creation of unique applications such as new display/lighting, photovoltaic device, TFTs and image sensors. However, there are serious impediments to the device performance such as high efficiency and longer life time due to the lack of understanding in charge transport and light-matter interaction mechanism in QD networks. Therefore, the proposed work is a comprehensive and fundamental understanding of underlying physics for charge transport in i) a single QD and surface, ii) QD/QD, iii) QD/interface/matrix, iv) QD/layer and /electrode, and v) bulk QD network systems and the creation of any real devices with new functionality. Enormous opportunities will arise from many unanswered questions of general nature/fundamental physical aspects of QDs related to charge transport that have still to be addressed. Thus, we will highlight and focus on strongly linked key themes and challenges that are at the heart of our proposed work. The main emphasis of proposed work will be on the understanding and control of charge transport dynamics in various QD systems, even though we explore the development of meaningful technologies and new devices based on QDs in the proposal. Our most intriguing issue is to expand the basic understanding of QDs for their potential applications. We will study interface dipole design/control, computational engineering for charge transport, analysis of the above five subsets, and will realise them into a full system with QD networks. Another challenge lies in integrating new QD materials with flexible/large-area substrates by monolayer-level control. We also propose the development of new synthetic routes for QDs with stable surface for supporting the above charge transport. This work will be underpinning research aimed at the development of the charge transport based QD devices with high efficiency and longer lifetime. These provide enormous opportunities to enable us not only to broaden and deepen our knowledge/experience in this area, but also to make rational predictions and open new device/system concepts unique to QD networks.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-ADG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
CB2 1TN Cambridge
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.