Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Development and application of ultra-high resolution nano-organized films by self-assembly of plant-based materials for next generation opto- and bio-electronics

Objective

Carbohydrate biomass constitutes an abundant and renewable resource that is attracting growing interest as a biomaterial. Convincingly the use of different natural “elementary bricks”, from oligosaccharides to fibers found in biomass, when mimicking self-assembly as Nature does, is a promising field towards innovative nanostructured biomaterials, leading to eco-friendly manufacturing processes of various devices. Indeed, the self-assembly at the nanoscale level of plant-based materials, via an elegant bottom-up approach, allows reaching very high-resolution patterning (sub-10nm) never attained to date by petroleum-based molecules, thus providing them with novel properties.

GREENANOFILMS aims to use carbohydrates as “elementary bricks” (glycopolymers, cellulose nanocrystals and nanofibers) for the conception of ultra-high resolution nanostructured technical films to be used in various markets, from large volume sectors, such as (i) high-added value transparent flexible substrate for printed electronic applications, (ii) thin films for high-efficiency organic photovoltaics, to growing markets, such as (iii) next generation nanolithography and (iv) high-sensitivity SERS biosensors.

GREENANOFILMS main impacts are the implementation of a new generation of ultra-nanostructured carbohydrate-materials that will play a prominent role in the achievement of the sustainability improvement of various opto- and bio-electronic sectors. A network of industrial end-user leaders is integrated in the project to facilitate the innovator-to-market perspective. The prospective environmental impacts and benefits of new green processes, eco-efficient nanomaterials and nanoproducts will be quantified with Life Cycle Assessment, risk assessment and validation of the industrial feasibility, including economic evaluation of the products. The results will be disseminated to the European smart paper, printed electronic, photovoltaic, display, security and health communities.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2013-SMALL-7
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
EU contribution
€ 892 435,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (11)

My booklet 0 0