Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Graphene-enabled on-chip supercontinuum light sources

Project description


FET Young Explorers

To pave the way towards the widespread application of on-chip mid-infrared(MIR)-pumped nonlinear supercontinuum light sources, we want to introduce a paradigm shift in integrated nonlinear optics. Rather than relying on non-standard waveguide designs, large waveguide footprints, bulky MIR pump lasers and/or limited spectral coverage in strategies that could never comply with the requirements for widespread deployment, we target a major advance based on novel material physics and device design, eliminating these issues. Our goal is to develop a near-infrared(NIR)- and MIR-emitting, ultra-compact on-chip supercontinuum light source by exploiting practically unexplored optical nonlinearities of standard silicon waveguides covered with graphene. This groundbreaking dual-band source will be realized by cascading two devices which are based on graphene-covered standard silicon waveguides, and which enable for the first time broadband self-phase modulation in the MIR and power-efficient second harmonic generation in the NIR within an ultra-compact chip footprint. To ensure that the entire supercontinuum device including the pump laser is compact, we will in addition develop a novel, small-sized, and practical modelocked MIR Tm-Ho fiber laser to pump the supercontinuum generation. These breakthroughs carry a highly novel and foundational character, and fit very well within the framework of the FET Open FP7-ICT-2013-C call. Since the partners involved in this project have both the knowledge and the equipment to model, design, fabricate and pump graphene-based nonlinear optical devices, our consortium holds all necessary skills required to successfully carry out this "high-gain/high-risk" project. In doing so, we will lay the foundations for graphene-on-silicon-based nonlinear photonic integrated circuits, and at the same time pave the way to the extensive use of on-chip supercontinuum light sources in real-life applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2013-C
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

VRIJE UNIVERSITEIT BRUSSEL
EU contribution
€ 517 232,00
Address
PLEINLAAN 2
1050 BRUSSEL
Belgium

See on map

Region
Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest Région de Bruxelles-Capitale/ Brussels Hoofdstedelijk Gewest Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (3)

My booklet 0 0