Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Technology CAD for III-V Semiconductor-based MOSFETs

Project description


Nanoelectronics
New device simulation methodology enabling the use of quantum drift-diffusion and Monte Carlo TCAD tools for comprehensive descriptions of Ultra Thin Body SoI FETs, FinFETs and nanowire FETs.

According to ITRS, III-V compound semiconductor n-type MOSFETs will reach production in 2018 as part of a new scaling scenario for high performance at very low voltage. The present lack of dependable TCAD models for the early stages of industrial development is a hindrance to benefit from the cost saves and time to market reduction that TCAD is recognized to deliver. To bridge this gap, III-V-MOS aims to provide to the European Semiconductor Industry accurate device simulation models and methods, integrated into TCAD tools, for successful introduction in CMOS technology of optimized device designs based on III-V MOSFETs at and beyond the 14nm node. III-V-MOS will develop, validate and transfer to industry a new device simulation methodology enabling the use of accurate quantum drift-diffusion and Monte Carlo TCAD tools. The models, calibrated by comparison with measurements on complete devices and ad-hoc test structures, will provide comprehensive descriptions of Ultra Thin Body Semiconductor on Insulator FETs, FinFETs and nanowire FETs at and beyond the 14nm node including device parasitics. A hierarchical approach will be used, starting from atomistic band structure calculations all the way down to customized TCAD simulation setups ready for direct use in an industrial environment.Systematic application of the new methodology under industrial guidance will provide new insight in nanoscale III-V semiconductor device physics and identify the potential of the technology boosters, thus substantially reducing the options to be explored for the device design and the corresponding costs. Future exploitation and high impact of the project results are guaranteed by the TCAD market leader (Synopsys); by a SME specialized in the growing business of atomistic simulations for technology development (QuantumWise); by a research center (IMEC) and an industry lab (IBM) engaged in CMOS fabrication technology development and by the European foundry GLOBALFOUNDRIES Dresden.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2013-11
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LA NANOELETTRONICA
EU contribution
€ 5 863,00
Address
VIA TOFFANO 2
40125 Bologna
Italy

See on map

Region
Nord-Est Emilia-Romagna Bologna
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (10)

My booklet 0 0