Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Spatio-temporal specificity of miRNA function

Objective

MicroRNAs are versatile regulators of gene expression and as such, they are essential parts of the gene regulatory networks controlling development and physiology of animals and plants. In particular, a number of miRNAs have been implicated in cell-type differentiation. Adding miRNAs to existing networks in particular subsets of cells can increase the complexity of developmental programs, and thus contribute to the vast diversity of cell types found in complex multicellular organisms.
In order to achieve this function, miRNAs have very diverse and highly specific spatio-temporal patterns of expression. Understanding, when and where miRNAs are expressed and how their expression is regulated is essential to place them in the correct cellular context and grasp their contribution to normal development and disease.
miRNA expression can be regulated at the transcriptional and post-transcriptional levels. While transcriptional regulation is known to generate distinct patterns of miRNA production, the contribution of post-transcriptional regulation of miRNA biogenesis and function to their spatio-temporal specificity is virtually unexplored. A few RNA binding proteins have been shown to affect miRNA biogenesis mostly in cell culture yet with one exception, none have been studied in the context of a whole developing organism where their roles in providing specificity to miRNA function could be assessed. Furthermore, only a handful of miRNAs are known to be post-transcriptionally regulated in tissue or stage-specific manners, mostly in organisms not amenable to genetic analysis, thus making it difficult to identify the underlying mechanisms.
I propose to use the genetic model system C. elegans to bridge these two stunted approaches. We will identify post-transcriptional regulators of miRNA biogenesis and activity and dissect their contribution to generating specific spatio-temporal domains of miRNA function and in doing so, increasing cell-type diversity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
EU contribution
€ 1 499 458,00
Address
CAMPUS-VIENNA-BIOCENTER 1
1030 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0