Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Understanding Auditory Information Processing in Naturalistic Environments

Objective

Studies of sensory processing in awake mammals are often limited to simple perceptual decisions, such as detecting the differences between two similar stimuli. However, such sensory tasks are usually limited by peripheral information, and do not tap into the special processing capabilities of the cortex. I hypothesize that neuronal responses in auditory cortex represent ethologically-relevant quantities that optimally summarize knowledge about the current scene and that allow behaviourally-relevant predictions of its future development. In order to study the role of such mechanisms in controlling behaviour, it is necessary to develop new technological and methodological tools.
I will develop a semi-natural living environment for rats that will make it possible to train multiple animals to perform behavioural tasks while continuously recording the electrical activity of their brains. Neural activity will be recorded continuously using telemetry inside the environment, or periodically outside it with chronic imaging techniques. Brain activity will be manipulated with optogenetic techniques. This methodology will minimize human intervention, increasing the reproducibility of behavioral and electrophysiological data collection while reducing the number of animals used.
Various amount of information about the states of the environment will be communicated to the rats with sounds. I will apply a new theory that rigorously quantifies the balance between information and reward. The theory will make it possible to deduce what the rats believe about the environment from their behavior, and to correlate these beliefs with neural activity.
Hearing disorders are a major cause of reduction of quality of life, especially in the elderly population. Better understanding of auditory processing in real-world scenarios is a crucial step for the future development of better tools and therapies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-ADG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

THE HEBREW UNIVERSITY OF JERUSALEM
EU contribution
€ 2 499 800,00
Address
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0