Objective
The objective of VHIA is to elaborate a holistic computational paradigm of perception and of perception-action loops. We plan to develop a completely novel twofold approach: (i) learn from mappings between auditory/visual inputs and structured outputs, and from sensorimotor contingencies, and (ii) execute perception-action interaction cycles in the real world with a humanoid robot. VHIA will achieve a unique fine coupling between methodological findings and proof-of-concept implementations using the consumer humanoid NAO manufactured in Europe. The proposed multimodal approach is in strong contrast with current computational paradigms influenced by unimodal biological theories. These theories have hypothesized a modular view, postulating quasi-independent and parallel perceptual pathways in the brain. VHIA will also take a radically different view than today's audiovisual fusion models that rely on clean-speech signals and on accurate frontal-images of faces; These models assume that videos and sounds are recorded with hand-held or head-mounted sensors, and hence there is a human in the loop who intentionally supervises perception and interaction. Our approach deeply contradicts the belief that complex and expensive humanoids (often manufactured in Japan) are required to implement research ideas. VHIA's methodological program addresses extremely difficult issues: how to build a joint audiovisual space from heterogeneous, noisy, ambiguous and physically different visual and auditory stimuli, how to model seamless interaction, how to deal with high-dimensional input data, and how to achieve robust and efficient human-humanoid communication tasks through a well-thought tradeoff between offline training and online execution. VHIA bets on the high-risk idea that in the next decades, social robots will have a considerable economical impact, and there will be millions of humanoids, in our homes, schools and offices, which will be able to naturally communicate with us.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringroboticsautonomous robots
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
ERC-2013-ADG
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
78153 Le Chesnay Cedex
France