Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Kinetic analysis of molecular profiles during human induced regulatory T cell (iTreg) differentiation: an integrative study

Objective

Regulatory T cells (Tregs) suppress other immune cells and, thus, are critical mediators of peripheral self-tolerance, preventing autoimmune disease but hampering tumor rejection. Therapeutic manipulations of Treg number and function are therefore subject to numerous clinical investigations. First in-man trials of adoptive Treg transfer to prevent graft-versus-host disease showed very promising outcomes. Yet, the number of naturally occurring Tregs (nTregs) is minute, encouraging the complementary approach of inducing Tregs (iTregs) from naive T cell precursors. Reinforcing this concept, there are several studies in mice indicating that iTreg transfer may be superior to nTreg transfer. Moreover, iTregs are generated in vivo and ample evidence corroborates that iTregs exert non-redundant functions to maintain health. However, the molecular mechanisms governing iTreg generation in humans are incompletely understood and procedures for human iTreg generation are controversial. Here we will therefore establish and compare different protocols of human iTreg generation juxtaposed with deep molecular profiling using RNA sequencing and DNA methylation analysis. The time-dependent transcriptomic and epigenetic data, capturing molecular events during generation of iTregs, will be subject to bioinformatics analysis. Our integrative analysis will present the first global hierarchical molecular map of pathways driving human iTreg differentiation, which in addition will provide a molecular scaffold enabling deeper analyses to resolve molecular events independent and dependent of established factors. Furthermore, the biological role of novel transcripts, splice variants and epigenetic regulations will be validated biologically by gene knockdown or overexpression experiments. Our interdisciplinary analysis of the molecular mechanisms ruling human iTreg generation may have important implications for our understanding and ability to treat cancer, autoimmune and inflammatory diseases.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

KAROLINSKA INSTITUTET
EU contribution
€ 197 811,60
Address
NOBELS VAG 5
171 77 STOCKHOLM
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0