Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

AUTONOMOUS CLOUD-COMPUTING VINEYARD ROBOT TO OPTIMISE YIELD MANAGEMENT AND WINE QUALITY

Objective

VinBot responds to a need to boost the quality of European wines by implementing precision viticulture (PV) tools in the face of serious market threats worldwide and structural shortcomings within the EU wine sector. Wine producer associations have no control over yield management throughout their members’ vineyards, which leads to reduced quality wine at the association level. At the vineyard level, wine growers are not able to accurately assess yield due to the large amount of terrain to inspect, and use sample-based estimates of smaller production areas to estimate yield, which also negatively affects wine quality. An automatic yield monitoring system would allow winegrowers to accurately assess grape yield and relevant phyto-data via a set of sensors, tracking the state and location of the assets, generating maps, capturing sample locations, and sharing such information in a quick, flexible, autonomous and easy-to-use way. By means of a novel, all-terrain, autonomous robot, VinBot automates the traditional visual yield estimation process throughout the entire vineyard, estimating the amount of leaves and grapes on the vine via computer vision and other sensors. Data-intensive computer vision algorithms are offloaded to external internet servers (the cloud). The VinBot extends visual leaf and fruit estimation throughout the entire vineyard, and centralises yield management in the SME-AGs by providing them with online yield maps of their members' vineyards. The VinBot represents a powerful precision viticulture tool, which does not exist today: the cloud-computing agricultural robot. Using the VinBot, the consortium SME wine producer associations will be able to coordinate and optimise yield management strategies throughout their thousands of members' vineyards, based on their collective expertise and commercial objectives. They expect to sell their wine for 8%-20% more over a five year period by employing the VinBot system to accurately estimate yield.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-SME-2013
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

BSG-SME-AG - Research for SME associations/groupings

Coordinator

ROBOTNIK AUTOMATION SL
EU contribution
€ 33 423,49
Address
RONDA AUGUSTE Y LOUIS LUMIERE 6 Y 8
46980 Paterna
Spain

See on map

Region
Este Comunitat Valenciana Valencia/València
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

My booklet 0 0