Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Black Carbon in the Atmosphere: Emissions, Aging and Cloud Interactions

Objective

Atmospheric aerosol particles have been shown to impact the earth's climate because they scatter and absorb solar radiation (direct effect) and because they can modify the microphysical properties of clouds by acting as cloud condensation nuclei or ice nuclei (indirect effects). Radiative forcing by anthropogenic aerosols remains poorly quantified, thus leading to considerable uncertainty in our understanding of the earth’s climate response to the radiative forcing by greenhouse gases. Black carbon (BC), mostly emitted by anthropogenic combustion processes and biomass burning, is an important component of atmospheric aerosols. Estimates show that BC may be the second strongest contributor (after CO2) to global warming. Adverse health effects due to particulate air pollution have also been associated with traffic-related BC particles. These climate and health effects brought BC emission reductions into the political focus of possible mitigation strategies with immediate and multiple benefits for human well-being.

Laboratory experiments aim at the physical and chemical characterisation of BC emissions from diesel engines and biomass burning under controlled conditions. A mobile laboratory equipped with state-of-the-art aerosol sensors will be used to determine the contribution of different BC sources to atmospheric BC loadings, and to investigate the evolution of the relevant BC properties with atmospheric aging during transport from sources to remote areas. The interactions of BC particles with clouds as a function of BC properties will be investigated with in-situ measurements by operating quantitative single particle instruments behind a novel sampling inlet, which makes selective sampling of interstitial, cloud droplet residual or ice crystal residual particles possible. Above experimental studies aim at improving our understanding of BC’s atmospheric life cycle and will be used in model simulations for quantitatively assessing the atmospheric impacts of BC.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

PAUL SCHERRER INSTITUT
EU contribution
€ 1 992 015,00
Address
FORSCHUNGSTRASSE 111
5232 VILLIGEN PSI
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Nordwestschweiz Aargau
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0