Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Discrete Optimization in Computer Vision: Theory and Practice

Objective

This proposal aims at developing new inference algorithms for graphical models with discrete variables, with a focus on the MAP estimation task. MAP estimation algorithms such as graph cuts have transformed computer vision in the last decade; they are now routinely used and are also utilized in commercial systems.
Topics of this project fall into 3 categories.
Theoretically-oriented: Graph cut techniques come from combinatorial optimization. They can minimize a certain class of functions, namely submodular functions with unary and pairwise terms. Larger classes of functions can be minimized in polynomial time. A complete characterization of such classes has been established. They include k-submodular functions for an integer k _ 1.
I investigate whether such tools from discrete optimization can lead to more efficient inference algorithms for practical problems. I have already found an important application of k-submodular functions for minimizing Potts energy functions that are frequently used in computer vision. The concept of submodularity also recently appeared in the context of the task of computing marginals in graphical models, here discrete optimization tools could be used.
Practically-oriented: Modern techniques such as graph cuts and tree-reweighted message passing give excellent results for some graphical models such as with the Potts energies. However, they fail for more complicated models. I aim to develop new tools for tackling such hard energies. This will include exploring tighter convex relaxations of the problem.
Applications, sequence tagging problems: Recently, we developed new algorithms for inference in pattern-based Conditional Random Fields (CRFs) on a chain. This model can naturally be applied to sequence tagging problems; it generalizes the popular CRF model by giving it more flexibility. I will investigate (i) applications to specific tasks, such as the protein secondary structure prediction, and (ii) ways to extend the model.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
EU contribution
€ 1 641 585,00
Address
Am Campus 1
3400 KLOSTERNEUBURG
Austria

See on map

Region
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0