Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nanoscale spin interactions and dynamics on superconducting surfaces

Objective

The latest concepts for quantum computing and data storage envision the use of single spins, which can be addressed and manipulated reliably. One of the main limitations towards this challenging goal is the ultra-short lifetime of excited spin states due to the interaction with the contacting leads. Another limitation is that coherence between individual spins is quickly lost. Already the measurement process for resolving coherent electron-spin interactions at the single atom level is highly challenging and has not been achieved so far.
Within our proposal, we will construct a low-temperature scanning tunneling microscope with a radio-frequency current detection system and a microwave source close to the tip. With this unique machine, we will be able to carry out state-of-the-art STM experiments combined with atomic-scale precision of measuring electron-spin resonance signals. With the approach of measuring in the frequency domain, we increase our energy resolution beyond the thermal energy level broadening into the µeV range and can thus investigate magnetic coupling, hyperfine interactions and spin coherence properties, which are not accessible in conventional STM experiments. We will also be able to probe the timescales of spin-lattice and spin-spin relaxations by pump-probe excitation schemes.
We will use this machine for resolving magnetic properties of single atoms and atomic-size nanostructures on superconducting substrates. These substrates exhibit two peculiarities, which are of crucial importance for quantum information processing. The spin lifetimes are orders of magnitudes larger than on normal metal surfaces. Furthermore, the long coherence length of Cooper pairs mediates coherent coupling of the spin states of paramagnetic atoms. We will manipulate the spin states by the intrinsic Josephson current as well as with external microwave radiation. Our model systems on superconductors will provide crucial steps towards quantum spin processing.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

FREIE UNIVERSITAET BERLIN
EU contribution
€ 1 999 468,80
Address
KAISERSWERTHER STRASSE 16-18
14195 Berlin
Germany

See on map

Region
Berlin Berlin Berlin
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0