Objective
We explore unconventional ways how ultracold fermions pair and form collective quantum phases exhibiting long-range order, such as superfluidity and magnetically order. Specifically, we plan to realize and study pairing with orbital angular momentum and pairing induced by long-range interaction. Besides the fundamental interest in unravelling unconventional pairing mechanisms and the interplay between superfluidity and quantum magnetism, our project will also lead to gaining experimental control over topologically protected quantum states. This will pave the way for future topological quantum computers, which are particularly robust to environmental decoherence.
Our project addresses three different aspects: (1) We plan to realize p-wave superfluids in two dimensions. This quantum phase exhibits topological excitations (vortices) with anyonic statistics and an isomorphism to the fractional quantum-Hall effect. We will investigate the unusual properties of p-wave superfluids, such as Majorana fermions, i.e. quasiparticles being their own anti-particles, which are predicted to be localized at vortices. This will boost the long-standing efforts in the cold atoms and condensed matter communities to understand topological states of matter. (2) We aim to realize d-wave pairing in optical lattices using a novel experimental approach. d-wave pairing is closely related to high-Tc superconductivity in the cuprates and we are interested in exploring its interplay with magnetic order. Superfluidity and magnetic order are antagonistic phenomena from a conventional BCS-theory point-of-view and hence several fundamental questions will be answered. (3) We plan to induce long-range interactions using a high-finesse optical cavity leading to a light-induced pairing mechanism. We will search for Cooper pairing in spin-polarized Fermi gases mediated by the interaction of Fermions with a quantized light field. This provides access to a new class of combined light-matter quantum states.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences theoretical physics particle physics fermions
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-CoG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
53113 BONN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.