Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Topological Josephson devices as a novel platform for creating and controlling non-Abelian anyons

Objective

Surprisingly, in two-dimensional systems quasi-particles may exist that are neither fermions nor bosons. When these particles are interchanged, their joint quantum mechanical wave function is predicted to pick up any phase in between 0 (as for bosons) and pi (as for fermions), hence the name anyons.

Even more intriguing is the class of non-Abelian anyons where interchange of particles completely changes the ground state of the system. This phenomenon lays at the heart of a wealth of theoretical proposals for new types of quantum statistics and topological quantum computation that is robust against decoherence. While theory has well advanced, experimental realizations possess their own challenges and are seriously lacking behind.

It is the objective of this proposal to experimentally realize a platform to detect and control non-Abelian anyons. We propose to combine the particle-hole symmetry of a superconductor with the spin-momentum locking at the surface of a topological insulator. Topological Josephson junctions are predicted to host Majorana type bound states at vortices. We propose to artificially create Josephson vortices at the junction of three phase-biased superconducting islands and to control and braid multiple Majorana states to prove their non-Abelian anyon character.

In preliminary experiments we have shown, as one of the first groups in the world, to be able to induce superconductivity in a topological insulator by the proximity effect. This puts our group in a unique position to open up the field of topological Josephson physics. The great technological challenges of the present proposal lay in the development of topological insulator materials with higher surface mobility and their integration into Josephson electronic circuitry with multiple phase biased superconducting islands. For the phase biasing as well as the read-out of the Majorana states after braiding on-chip SQUID based current amplifiers will be developed.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

UNIVERSITEIT TWENTE
EU contribution
€ 1 999 200,00
Address
DRIENERLOLAAN 5
7522 NB Enschede
Netherlands

See on map

Region
Oost-Nederland Overijssel Twente
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0