Objective
"The spatial organization of the genome inside the cell nucleus is tissue-specific and has been linked to several nuclear processes including gene activation, gene silencing, genomic imprinting, gene co-regulation, genome maintenance, DNA replication, DNA repair, chromosomal translocations and X chromosome inactivation. In fact, just about any nuclear/genome function has a spatial component that has been implicated in its control. We know surprisingly little about chromosome conformation and spatial organization or how they are established. The extent to which they are a cause or consequence of genome functions are current topics of considerable debate, however emerging data from my group and many other groups world-wide indicate that nuclear location and organization are drivers of genome functions, which in cooperation with other features including epigenetic marks, non-coding RNAs and trans-factor binding bring about genome control. Thus, genome spatial organization can be considered on a par with other epigenetic features that together contribute to overall genome control. The classical paradigm of early mammalian development arguably represents the most dramatic and yet least understood process of genome reprogramming, where a single cell undergoes a series of divisions to ultimately give rise to the hundreds of different cell types found in a mature organism. Study of pre-implantation embryo development is hindered by the very nature of the life form, composed of extremely low cell numbers at each stage, which severely limits the options for investigation. My lab has recently developed a novel technique called single cell Hi-C, which has the power to detect tens of thousands of simultaneous chromatin contacts from a single cell. In this application I propose to apply this technology to study chromosome structure and genome organization during mouse pre-implantation development along with single cell transcriptome analyses from the same cells."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesgeneticsDNA
- natural sciencesbiological sciencesgeneticsRNA
- natural sciencesbiological sciencesgeneticschromosomes
- medical and health sciencesclinical medicineembryology
- natural sciencesbiological sciencesgeneticsgenomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
ERC-2013-ADG
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
CB22 3AT Cambridge
United Kingdom