Objective
The success of modern medical treatments such as cellular therapy and targeted treatments requires appropriate tools for in vivo monitoring. Imaging modalities, such as magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) are key candidates due to their noninvasive nature. However, these imaging techniques are extremely expensive and can involve radiation, both of which hinder their longitudinal and repetitive use.
Ultrasound has so far been unsuitable due to the absence of a label to differentiate regions of interest from tissue background, the main problem being that current ultrasound contrast agents (CAs) have active lifetimes in the order of minutes. The CoNQUeST platform (Clinical Nanoparticles for Quantitative Ultrasound with high STability) proposed here is an entirely new type of ultrasound CA that is extremely stable (lifetime of a year) and is not affected by insonation. This mechanism of contrast generation appears completely novel: The polymeric particles are under 200nm in diameter and must contain a soluble metal (M.Srinivas et al., patent pending, filed 09/2012). Based on the current state of the art, these particles are too small and do not contain the requisite gaseous component for ultrasound contrast.
CoNQUeST particles are applicable to longitudinal and repeated imaging, as is necessary for cell tracking, due to their stability. Furthermore, these particles can be chemically bound to targeting agents, dyes and drugs, and are suitable for multimodal imaging, including MRI (both 1H and 19F), fluorescence and SPECT. Finally, the CoNQUeST agents are suitable for clinical use.
I propose the application of the CoNQUeST agents to a clinical trial for tracking dendritic cell therapy in melanoma patients, longitudinal theranostic imaging in preclinical models and thorough characterisation of this novel mechanism of ultrasound contrast generation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences clinical medicine oncology skin cancer melanoma
- engineering and technology medical engineering diagnostic imaging magnetic resonance imaging
- medical and health sciences medical biotechnology cells technologies
- natural sciences physical sciences acoustics ultrasound
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
6525 XZ Nijmegen
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.