Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

"Topological, Algebraic, Differential Methods in Classification and Moduli Theory"

Objective

"Moduli of curves with symmetries:determine the stable irreducible components of the moduli space of curves of genus g with an action of a finite group G, using a new homological invariant. Stable means: for g sufficiently large, or for sufficiently large numerical branching function. Higher homological stabilization for these moduli spaces. Faithful actions of the absolute Galois group on moduli spaces of marked varieties, triangle curves, varieties isogenous to a product, Beauville surfaces. Change of fundamental group. Fields of definitions of triangle curves and the scheme representing triangle curves.
Uniformization: characterization of proj. var. whose universal cover is a given bounded symmetric domain (Catanese-Di Scala did the case of tube domains). Orbifold Uniformization: where we have a quotient of a non free action, or a noncompact such quotient. Classification of surfaces with genus 0 having the bidisk as universal cover. Symmetric differentials and fundamental groups of some ball quotients.
Topological methods in Moduli Theory: strong, weak and pseudo rigidity for the Inoue type varieties of Bauer and Catanese (free quotients of ample divisors on projective varieties which are K(\pi, 1)). With Lonne and Wajnryb, using methods by Auroux and Katzarkov: study canonical symplectic structures and deformation types of some simply connected algebraic surfaces, determining braid group factorizations associated to subcanonical projections. More general bicoloured braid factorizations associated to general projections. Teichmueller space of certain algebraic surfaces.
Classification and Moduli of surfaces with low invariants. Surfaces of geometric genus 0: new construction techniques, structure of fundamental groups, moduli spaces, existence questions for surfaces with certain invariants, for homotopy quadrics, structure of fake quadrics."

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-ADG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

UNIVERSITAT BAYREUTH
EU contribution
€ 1 725 420,00
Address
UNIVERSITATSSTRASSE 30
95447 BAYREUTH
Germany

See on map

Region
Bayern Oberfranken Bayreuth, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0