Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Entirely Self-organized: Arrayed Single-Particle-in-a-Cavity Reactors for Highly Efficient and Selective Catalytic/Photocatalytic Energy Conversion and Solar Light Reaction Engineering

Objective

The proposal is built on the core idea to use an ensemble of multiple level self-organization processes to create a next generation photocatalytic platform that provides unprecedented property and reactivity control. As a main output, the project will yield a novel highly precise combined catalyst/photocatalyst assembly to: 1) provide a massive step ahead in photocatalytic applications such as direct solar hydrogen generation, pollution degradation (incl. CO2 decomposition), N2 fixation, or photocatalytic organic synthesis. It will drastically enhance efficiency and selectivity of photocatalytic reactions, and enable a high number of organic synthetic reactions to be carried out economically (and ecologically) via combined catalytic/photocatalytic pathways. Even more, it will establish an entirely new generation of “100% depoisoning”, anti-aggregation catalysts with substantially enhanced catalyst life-time. For this, a series of self-assembly processes on the mesoscale will be used to create highly uniform arrays of single-catalyst-particle-in-a-single-TiO2-cavity; target is a 100% reliable placement of a single <10 nm particle in a 10 nm cavity. Thus catalytic features of, for example Pt nanoparticles, can ideally interact with the photocatalytic properties of a TiO2 cavity. The cavity will be optimized for optical and electronic properties by doping and band-gap engineering; the geometry will be tuned to the range of a few nm.. This nanoscopic design yields to a radical change in the controllability of length and time-scales (reactant, charge carrier and ionic transport in the substrate) in combined photocatalytic/catalytic reactions. It is of key importance that all nanoscale assembly principles used in this work are scalable and allow to create square meters of nanoscopically ordered catalyst surfaces. We target to demonstrate the feasibility of the implementation of the nanoscale principles in a prototype macroscopic reactor.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-ADG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
EU contribution
€ 2 427 000,00
Address
FREYESLEBENSTRAßE 1
91058 ERLANGEN
Germany

See on map

Region
Bayern Mittelfranken Erlangen, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0