Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Morphogenesis of proliferative epithelial tissue

Objective

Shape is a conspicuous and fundamental property of living multicellular organisms. Questions related to embryo shape or morphogenesis have naturally haunted developmental biologists for decades. Recent advances have highlighted that the understanding of the morphogenesis of proliferative tissue will require (i) the dissection of how subcellular cytoskeleton dynamics controls cellular processes such as cell division orientation and adherens junction formation; (ii) the study of the interplay between biochemical and mechanical processes regulating collective cell behaviours and thus tissue movements. In addition, whole tissue imaging has revealed that distinct local cell dynamics account for tissue shape regulation. Yet, it remains poorly explored how gene expression patterns specify distinct local cell dynamics within a proliferative epithelium. To decipher the mechanisms of Drosophila epithelial tissue morphogenesis, we aim to apply a series of complementary, state of the art methods (quantitative measurement of cell and tissue morphogenesis, mechanical stress inference, opto-genetics, computer simulation and advanced statistics) in order to:
1. Dissect the molecular and mechanical mechanisms regulating cytoskeleton and cell dynamics by focusing on mitotic spindle orientation and de novo adherens junction formation during cell division and cell rearrangement.
2. Link cytoskeleton organization, cell dynamics and mechanics to the regulation of large-scale tissue deformation.
3. Introduce a ‘morphogenomics’ approach to understand how combinatory gene expression patterns can account for distinct cell dynamics observed in the different regions of a tissue.
By exploring the mechanisms of tissue morphogenesis at different time-scales and length-scales, as well as by focusing both on its genetic and mechanical regulation, these complementary aims should advance the understanding of morphogenesis in animals.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-ADG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

INSTITUT CURIE
EU contribution
€ 2 419 521,00
Address
RUE D ULM 26
75231 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0