Objective
Many important products are made using fluidized bed reactors, where solid particles are suspended by a gas flow. This promotes highly efficient gas-particle contact, resulting in high heat transfer, high chemical reaction rates and high product yields. Multiscale modelling has proven to be indispensable in the design and optimisation of fluidized bed reactors. Most coarse-grained models assume that the solid particles are of spherical shape because this simplifies the treatment of gas-solid drag and particle collisions. However, many particles used in fluidized bed (bio)reactors are non-spherical. This means that anisotropic collisions, anisotropic gas-solid drag, effects of local particle alignment, and alignment by nearby internal and external walls all need to be taken into account.
I propose to pioneer a multiscale simulation methodology, backed up by validating in-house experiments, for prediction of structure formation in gas-solid flows of inelastic non-spherical particles. As a first step we focus on elongated particles. The multiscale approach consists of: 1) fully resolved simulations to obtain closures for translational and rotational gas drag tensors in crowded environments and near external and internal walls, 2) Discrete Particle Model simulations to validate the drag closures with matching experiments and to obtain statistics of angular and linear velocity changes due to inter-particle collisions between groups of particles, 3) a novel Lagrangian method based on stochastic multi-particle collisions. The collision propagation rules make maximum use of conservation laws and local symmetries of the particle configuration, orientation and deformation rates. The coarse-grained model is amenable to a parcel approach and can be coupled with heat and mass transfer models, allowing for simulation of industrial scale reactors with non-spherical particles.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences computational science multiphysics
- natural sciences chemical sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-CoG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.