Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Invariant visual object representations in the early postnatal and adult cortex: bridging theory, model and neurobiology

Objective

Our visual system can effortlessly recognize hundreds of thousands of objects in spite of tremendous variation in their appearance, resulting, for instance, from changes in object position and pose. Achieving such an invariant representation of the visual world is an extremely challenging computational problem that even the most advanced artificial vision systems are not fully able to solve. This is why understanding the neuronal mechanisms underlying object vision is one of the major challenges of systems neuroscience and a crucial step towards developing artificial vision systems and visual prostheses.
Little is known yet about how the brain develops and maintains invariant object representations. The leading theory is that visual neurons exploit the spatiotemporal continuity of visual experience (i.e. the natural tendency of different object views to occur nearby in time) to learn to produce similar responses for temporally contiguous stimuli, so as to factorize object identity from other variables (such as position, size, etc.). This Unsupervised Temporal Learning (UTL) strategy has been instantiated in a number of computational frameworks, but its empirical investigation has received little attention. My proposal will use the visual system of the rat to address key questions about the nature of UTL and other learning theories, such as their impact on recognition behavior and object representations at both single-neuron and population level, and their role during early postnatal development. This will be achieved through a highly multidisciplinary approach, including high-throughput behavioral testing, in vivo neuronal recordings, immediate-early gene labeling, controlled-rearing in virtual visual environments, and computational modeling. This will lead to ground-breaking insights into the learning principles that sculpt the cortical representations of visual objects through unsupervised exposure to the spatiotemporal statistics of visual experience.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
EU contribution
€ 2 000 000,00
Address
VIA BONOMEA 265
34136 Trieste
Italy

See on map

Region
Nord-Est Friuli-Venezia Giulia Trieste
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0