Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Novel radical chemistry for complex peptide synthesis and engineering

Objective

"Natural products are a constant source of inspiration in chemistry and have played a key role in the development of medicine. Recently, thanks to the progress in genomics and metagenomics, it has appeared that the biosynthetic potential of microorganisms and the complexity of the reactions catalyzed have been largely underestimated. Notably, enzymes using radical-based chemistry have been shown to be present in a very-large amount of biosynthetic pathways and to be widely distributed among all living organisms. The highly reactive radical species they generate give access to chemistries not accessible otherwise and allow them to catalyze unique and diverse reactions. Among them, the so-called ""radical SAM enzymes"" have attracted considerable attention in recent years. While, initially hypothesized to be a family with several hundreds of members, recent genomic analyses have revealed that there are several tens of thousands of radical SAM enzymes catalyzing more than sixty distinct biochemical processes.

Very recently, an ever increasing number of radical SAM enzymes has been discovered in the biosynthetic pathways of natural compounds. In several cases, it has been shown that, instead of involving non-ribosomal or polyketide synthases, microorganisms use radical SAM enzymes to extensively modify ribosomally synthesized peptides producing highly complex bioactive molecules. In the present project, we propose to develop a multidisciplinary approach to investigate promising radical SAM enzymes catalyzing peptide modifications and elucidate their unique mechanisms which, in many cases, have no counterparts in biochemistry and synthetic chemistry. Based on the unique and highly conserved radical SAM domain and the mechanistic insights gained, we will develop novel radical SAM enzymes as catalysts for the synthesis of new chemicals with original structures and properties using a synthetic biology approach."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

INSTITUT NATIONAL DE RECHERCHE POUR L'AGRICULTURE, L'ALIMENTATION ET L'ENVIRONNEMENT
EU contribution
€ 1 984 218,00
Address
147 RUE DE L'UNIVERSITE
75007 PARIS CEDEX 07
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0