Objective
The expansion of a dilute gas through a gasdynamics convergent-divergent nozzle can occur in three different regimes, depending on the inlet and discharge conditions and on the gas: via a fully subsonic expansion, via a subsonic-supersonic or via a subsonic-supersonic-subsonic expansion embedding a compression shock wave within the divergent portion of the nozzle. I devised an exact solution procedure for computing nozzle flows of real gases, which allowed me to discover that in molecularly complex fluids eighteen additional different flow configurations are possible, each including multiple compression classical shocks as well as non classical rarefaction ones. Modern thermodynamic models indicate that these exotic regimes can possibly occur in nozzle flows of molecularly complex fluids such as hydrocarbons, siloxanes or perfluorocarbons operating close to the liquid-vapour saturation curve and critical point. The experimental observation of one only of these eighteen flow configurations would be sufficient to prove for the first time that non classical gasdynamics phenomena are indeed possible in the vapour region of a fluid with high molecular complexity
To this purpose, a modification to the blow-down wind tunnel for dense gases at Politecnico di Milano is proposed to use mixtures of siloxane fluids. Measurements are complemented by numerical simulations of the expected flow field and by state-of-the-art uncertainty quantification techniques. The distinctive feature of the proposed experiment is the adoption of mixture of siloxanes as working fluids. Mixtures of siloxanes are well known to exhibit an higher stability limit than their pure components, due to the redistribution process occurring at high temperature.
The increased understanding of real-gas dynamics will enable to improve the design of Organic Rankine Cycle Engines, to be used in small scale energy production from biomasses, binary geothermal systems and concentrating solar thermal power plants.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences thermodynamics
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences chemical sciences organic chemistry hydrocarbons
- engineering and technology environmental engineering energy and fuels renewable energy solar energy solar thermal
- engineering and technology environmental engineering energy and fuels renewable energy geothermal energy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-CoG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
20133 Milano
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.