Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Polydisperse granular avalanche impact on civil engineering structures

Objective

Avalanches of granular geomaterials (rock, soil, snow, ice, etc.) are frequent and pose varying degrees of risk to land use, infrastructure, and personal safety in mountainous areas of the world.
One of the main goals of avalanche research is to forecast the flow-obstacle interaction in order to (i) design civil engineering structures able to withstand the impact forces and (ii) assess the physical vulnerability of existing structures in avalanche prone-areas. The granular nature of sliding geomaterials is considered the crux of flow-obstacle interaction. At present, the granular mechanisms involved in the flow-obstacle interaction and the resulting forces remain poorly understood.
In order to provide efficient tools to calculate impact forces stemming from full-scale granular avalanches and to contribute to hazard mapping and risk management, we propose to investigate the mechanical behavior of granular flows around obstacles, accounting for grain-size dynamics.
Key objectives of the study are: (1) to improve our fundamental understanding of the dynamics of avalanche-flows around obstacles and the induced forces with attention paid to the role of grain-size dynamics with the help of innovative discrete numerical simulations, laboratory tests and field-based observations coupled with continuum mechanics theory, (2) to develop universally recognized reliable methods for the design of efficient protection structures built to brake, divert and stop the avalanche-flow in run-out zones, and of safe civil engineering structures, (3) to introduce overall final project deliverables to wider European and international communities (researchers, practitioners, decision makers, general public) through publications, presentations and outreach activities.
The proposed methodology is likely to be further developed to explore other important questions such as the effect of inter-particle cohesion (aggregation and breakage) and of particle shape on flow-obstacle interaction.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

INSTITUT NATIONAL DE RECHERCHE EN SCIENCES ET TECHNOLOGIES POUR L'ENVIRONNEMENT ET L'AGRICULTURE
EU contribution
€ 163 088,45
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0