Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Computational Multiscale Modelling of Hydraulic Fracturing for Shale Gas Development

Objective

Recent advances in hydraulic fracturing (HF) have allowed for commercially viable extraction of oil/gas from deep underground shale formations previously deemed uneconomical to exploit. Indeed, HF promises to be one of the key industries for future energy exploitation. However, the use of HF in unconventional oil/gas extraction has generated controversy, so that several countries have imposed moratorium on its use for unconventional hydrocarbon extraction. Opponents of HF claim that its use poses severe environmental risks such as contamination of groundwater resources, that it depletes freshwater supply and induces seismicity.

To gain a better understanding of the HF-process, the applicant proposes to develop, implement, verify and validate a 3D stochastic computational multiscale & multiphysics framework. The measurable outcome of this research will be an open-source software package that can be used to study and better understand HF and finally to improve current-practice HF.

Within the computational framework, fluid flow through the evolving 3D fracture network will be modelled on a 2-stage reservoir scale. Fine-scale simulations will be performed in order to more reliably predict macroscopic material parameters at the 2-stage reservoir scale. Moreover, based on (stochastic) uncertain input parameters, the applicant will quantify uncertainties in order to provide upper and lower bounds of her predictions. The researcher will provide a framework based on graph-theory and sensitivity analysis to choose the appropriate model and discretization. This computational framework will be verified and validated by comparison to experiment and site data, and will be used to answer some of the most pressing issues in HF, e.g. the interaction between fracture networks at different stages, the possibility of the fracture network encroaching into adjacent layers of rock or the interaction of fractures with existing natural faults that intersect the shale seam, to name a few.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

BAUHAUS-UNIVERSITAET WEIMAR
EU contribution
€ 161 968,80
Address
GESCHWISTER SCHOLL STRASSE 8
99423 Weimar
Germany

See on map

Region
Thüringen Thüringen Weimar, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0