Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Hyperscanning 2.0 Analyses of Multimodal Neuroimaging Data: Concept, Methods and Applications

Objective

"Classical ""Hyperscanning"" is concerned with determining brain interactions of two subjects by analyzing correlations of their brain signals. We here define ""Hyperscanning 2.0"" as a broader concept, which refers to the analysis of (arbitrarily) coupled brain activity in multiple datasets that are temporally synchronized. With this definition, applications of Hyperscanning 2.0 range from the analysis of brain responses to repeated complex stimulation to the determination of interactions between different types of brain signals of multiple subjects in multi-modal recordings. In this research proposal, we will use Hyperscanning 2.0 for detecting specific multi-modal brain signatures of visual attention and attentional shifts during movie viewing, as well as of emotional valence in clinical populations suffering from Major Depressive Disorder (MDD). To this end, we will collect and analyze respective electroencephalography (EEG) and functional magentic resonance imaging (fMRI) data.
Many of the computational tools needed for carrying out Hyperscanning 2.0 analyses are yet to be developed. With this project we will provide a blind source separation (BSS) framework for optimally extracting latent (not directly observable) brain processes with well-defined similarities/couplings from multiple neuroimaging datasets. Within this framework we will implement two algorithms, canonical and hyper source power correlation analysis (cSPoC and HyperSPoC), which will for the first time enable the optimal treatment of an important class of neurophysiological features - namely brain oscillations - in a Hyperscanning setting. Since our algorithms will be capable of isolating brain activity of interest in the absense of external trigger information, they will enable the study of attention and emotion in more realistic scenarios than previous approaches and thereby promise to contribute to a better understanding of these cognitive functions in healthy subjects and patients in the future."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Call for proposal

FP7-PEOPLE-2013-IOF
See other projects for this call

Coordinator

TECHNISCHE UNIVERSITAT BERLIN
EU contribution
€ 209 463,90
Address
STRASSE DES 17 JUNI 135
10623 Berlin
Germany

See on map

Region
Berlin Berlin Berlin
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data