Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Accurate Waveforms for Extreme/Intermediate-mass-ratio-inspirals (AWE)

Objective

"The age of gravitational wave astronomy will soon be upon us. Initially the most likely sources to be detected by ground-based detectors will be compact binary systems. This project proposes to deepen our understanding of such two-body systems by computing accurate gravitational waveforms from extreme- and intermediate-mass-ratio systems. The latter is expected to be directly observed in the LIGO and VIRGO detectors and having access to accurate waveforms will allow us to perform precision science with the incoming signals. The detailed information revealed by these signals will allow us to test gravity in the strongest-field regimes and provide rich insight into some of the most mysterious objects in the universe, black holes.

The approach taken will be to extend existing perturbation theory techniques, with a particular emphasis on using the results to compute the inspiral of a compact object into a black hole. Recent results have shown that the perturbation theory approach is valid over a much wider range of mass-ratios than previously suspected and, as such, perturbation theory results are already having an impact on studies on a wide class of systems within the two-body problem. By making connections with post-Newtonian, numerical relativity and effective-one-body theory perturbation theory has taken centre stage in binary system modeling recently. This project will further these synergies and provide a deep understanding of large-mass-ratio binary systems.

Novel approaches to computing inspirals via the so-called `self-force' approach will be developed. In particular, insight coming from University College Dublin via their Green function approach and the deep knowledge at Massachusetts Institute of Technology of the first-order self-force problem will facilitate the development of new methods for computing gravitational wave emission from the systems of physical interest."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
EU contribution
€ 263 058,30
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0