Objective
Background:
The ability of cancer cells to survive extreme levels of oxidative stress, an imbalance of free radicals and antioxidants, plays a role in disease aggressiveness. However, there are currently no methods to image the spatial distribution of redox state in the clinic and few preclinical methods have the potential for translation. Our long term goal is to develop sensitive and specific imaging tools with which to study how redox processes contribute to cancer drug resistance, with a view to translating these results into clinical applications.
Aims:
We aim to explore the hypothesis that the ability of cancer cells to detoxify free radicals is linked to their capacity to evade cell death during therapy. We will perform our studies to test this hypothesis first using live cell microscopy, then through imaging in small animal models.
Methods:
Existing methods for measuring redox state in live cells, including fluorescence and Raman microscopy, will be studied during modulation of the external environment and derivation of drug resistance. These readouts will be compared to classical biochemical assays of oxidative stress upon cell harvest. A low cost, high sensitivity instrument will then be developed to image these same contrast mechanisms through endoscopy in colorectal cancer mouse models. Finally, a novel “smart” contrast agent concept will be explored to enable deep tissue redox imaging, using both fluorescence endoscopy and photoacoustic tomography.
How the results of this research will be used:
If elevated antioxidant capacity is causative in the development of drug resistance, the results of this work will provide new strategies for detecting relapse and may aid clinical trials of therapies to target this adaptation. Ultimately, the Marie Curie Career Integration Grant will enable the researcher to establish this novel research area at the University of Cambridge, by strengthening existing collaborations and developing new links within the EU.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences optics microscopy
- medical and health sciences basic medicine pharmacology and pharmacy drug resistance
- medical and health sciences clinical medicine oncology colorectal cancer
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2013-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
CB2 1TN Cambridge
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.