Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

New Frontiers in Quantum Simulation

Objective

"Quantum Simulation has evolved into an active multidisciplinary field in physics, involving experimentalists and theorists working at the interface of Quantum Optics, Condensed Matter physics, and Quantum Information Science. In particular, an increasing experimental effort is focused in new technologies to scale up current setups, such as arrays of ion microtraps and arrays of coupled microwave cavities. A leap in complexity will be achieved in the fowollowing years, since new experiments will be able to enter into the true many-body regime.

NewFQS (New Frontiers in Quantum Simulation) is a theoretical project that will explore the possibilities opened by emerging new technologies for analogical quantum simulation with many-body quantum optical systems. Our focus will be on trapped ion systems and ensembles of qubits coupled to optical or microwave cavities. In particular we will:
(i) Study the idea of ""ion-cluster"" quantum simulation, in wich qubits are replaced by ensembles of ions, and its potential impact in the study of quantum glasses and lattice gauge theories. We will study the collective enhancement of atom-atom interactions in the ion-cluster scheme, and how it may allow us to design robust one and two-dimensional quantum simulations. (ii) Investigate dissipative quantum phase transitions that can be implemented with trapped ions and arrays of microwave cavities, in particular the quantum lattice analogs of the lasing phase transition.
(iii) Design applications of many-body phases of quantum simulators for quantum metrology. The sensitivity of those systems near quantum phase transitions to external perturbations will be exploited as a basic principle for quantum sensing. We will design many-body atomic clocks with quantum simulators, in which entanglement and correlations in quantum systems are used to enhance the precision of interferometric measurements of time and frequencies."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

THE UNIVERSITY OF SUSSEX
EU contribution
€ 100 000,00
Address
SUSSEX HOUSE FALMER
BN1 9RH Brighton
United Kingdom

See on map

Region
South East (England) Surrey, East and West Sussex Brighton and Hove
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0