Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

"Assembly, Mechanism, and Evolution of Macromolecular Machinery"

Objective

"Life has evolved many molecular machines to perform mechanical tasks. Studying these machines promises insights into how machinery can generate force, how they assemble themselves, and how they evolved from simpler components. Ultimately this knowledge may inform synthetic biology projects to redesign existing, or evolve novel, machinery. Yet these insights have been hindered by our inability to visualize these machines as they occur in situ. The emergent technique of electron cryo-tomography, however, offers the ability to image this molecular machinery in situ, and will likely form the basis of much research on these machines due to its ability to resolve individual proteins within frozen living cells in three dimensions. Here I describe interdisciplinary work to dissect macromolecular machinery and understand its function and evolution using as 'testing ground' one of the most striking examples of molecular machinery, the bacterial flagellar motor. The flagellar motor is attached to a long filament that it spins to form a helical propellor, pushing the bacterium in favourable directions. Yet although the motor's many components and cellular role are known, the molecular mechanism of rotation and self-assembly remain enigmatic, and while its ancestry is established, how additional proteins are recruited to form novel machinery is poorly understood. Pseudo-atomic models of motors in situ will be generated using electron cryo-tomography together with development of tagging techniques to locate proteins. These structures will next be related to their mechanical output using single-molecule biophysical methods to understand the mechanical contributions of components. Finally, fundamental principles of the evolution of macromolecular machinery will be explored, both by studying recent elaborations upon motors in some bacteria, and by studying convergent evolution by the unrelated – yet analogous – archeaellum."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 100 000,00
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0