Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

New Induction Wireless Manufacturing Efficient Process for Energy Intensive Industries

Objective

NIWE project will demonstrate a new production process able to decrease the embodied energy of the foundry products by over 25%, reducing drastically its carbon footprint. The demonstration will be performed in the aluminium, iron and steel sectors.

The expected energy efficiency gains are due to a new furnace that, by means of a power transmission system based on induction, will allow a highly flexible production. This increase on the production flexibility attends to the current variability of the foundry products demand.

The current crisis has introduced a high variability in the demand, which can be measured in terms of quantity and diversity of the demanded products. The manufacturers are now forced to start and stop many times their production chains, change the moulds and, the most important in energy penalty terms, to reheat many times big quantities of raw materials. Consequently, the cost efficiency of the process has suffered a high decrease.



NIWE tackles these actual and current problems by providing a new furnace that will take the power by an inductive coupling. This will provide a very quick power transmission from the grid to the furnace. This power will be supplied to the heating system, which, depending on the foundry material could consist on resistances or induction heating.

The rapidity of the power transmission system, as well as the wireless operation, will allow the use of smaller furnaces. This way, the reserve of melted material for feeding the moulds will be smaller, and therefore the required energy to maintain it melted.

In addition, the wireless furnace will provide a flexible operation, allowing a quick modification of the factory layout, which will be based on easy interchangeable furnaces of different types andsizes, depending on the demand.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ENERGY-2011-2
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

FUNDACION TECNALIA RESEARCH & INNOVATION
EU contribution
No data
Address
PARQUE CIENTIFICO Y TECNOLOGICO DE BIZKAIA, ASTONDO BIDEA, EDIFICIO 700
48160 DERIO BIZKAIA
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (9)

My booklet 0 0