Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Coherent control and molecular dynamics in the era of terahertz

Objective

"Intense electromagnetic fields in the Terahertz (THz, 10^-12 Hz) frequency range have recently become tabletop available. In this proposal I offer to advance this unique range of frequencies into the world of gas phase coherent control and molecular dynamics. THz fields interact with molecules via their permanent electric dipoles, and induce molecular orientation, thus providing a new molecular handle (in addition to the commonly used visible/near-IR optical frequencies), for inducing and studying the rotational and molecular dynamics in the gas phase. I will utilize both THz and optical fields as two distinct molecular handles to induce unique molecular rotational responses that are inaccessible otherwise, and are invaluable for various spectroscopic techniques in the realm of molecular dynamics (such as high harmonic generation, molecular frame Photo-electron and Photo-ion angular distributions and ultrafast X-ray diffraction). THz induced inversion-asymmetry (orientation) enables nonlinear optical interrogation techniques that are forbidden in isotropic gas samples (such as second harmonic generation). Combining the polarizability-selective and dipole-selective interactions of optical and THz fields respectively, will enable far improved control of 3D molecular angular distributions – a long standing goal in chemistry and physics. The efficient THz-dipole interaction require field intensities that are orders of magnitude lower than those required by optical fields, and will be implemented for studying fragile samples such as bio-molecules. The dipole-selectivity of the THz field will be used for probing dynamic processes involving changes in the molecular dipole (such as trans<-->cis isomerization in azobenzene). The broadband resonant interaction of THz with the multilevel rotational system reveals collective light-matter phenomena that are fundamental to spectroscopy and will be further studied."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-CIG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinator

TEL AVIV UNIVERSITY
EU contribution
€ 100 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0