Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Indirect Search for Dark Matter Using the VERITAS Telescope Array

Objective

Observations of the motions of stars and galaxies in large-scale structures have revealed that most (>80%) of the matter in the Universe is invisible. The nature of the “dark matter” is one of the outstanding puzzles in modern physics and experiments are underway to detect and characterize it. There are three main experimental approaches: direct detection of dark matter particles arriving from space, generation and detection of dark matter particles in particle accelerators, and indirect detection via observation of the gamma rays produced when dark matter particles decay or self-annihilate. Such gamma rays would travel from sites of dark matter density in the universe, and be observable on Earth with gamma-ray telescopes. My research proposal is to utilize very-high-energy (VHE) gamma-ray observations of candidate astrophysical dark matter sites to measure or constrain the dark matter annihilation rate, and to statistically combine the results with those from collider and other VHE telescope searches. The research will utilize VERITAS, one of the leading VHE gamma-ray observatories currently in operation, and will be conducted under the supervision of Dr. John Quinn at University College Dublin. A key component of the research will be to investigate improved analysis techniques to enhance the gamma-ray selection and background rejection image analysis techniques employed in the analysis of VERITAS data. I developed expertise with these methods during my graduate and post-doctoral work in particle physics, and am thus uniquely positioned to adapt and refine such techniques for use in astrophysics. I will also combine gamma-ray annihilation rate limits with complementary measurements from other telescopes and collider experiments to produce significantly improved constraints on dark matter. This project is highly interdisciplinary, bringing together particle physics and astrophysics with image processing, multivariate data analysis and statistical techniques.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
EU contribution
€ 191 359,80
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0