Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Quantum Chemistry of Enzymatic Nucleophilic Substitution: Untangling the Role of Metal Ions and Protein Environment in Biochemical Nucleophilic Substitution at Phosphorus and Sulfur

Objective

Enzymatic nucleophilic substitution reactions are ubiquitous as key steps in biochemical processes of living cells. Despite their importance, they are poorly understood, in particular regarding the exact mechanism and involvement of the protein environment and the role and mechanistic involvement of metal ions. Through interpretative methods from chemical reactivity theory, I will tackle the missing links in this field of molecular life sciences. This project thus goes beyond transition state calculations, which are today’s state of the art in computational enzymology, by addressing the question why. The project’s goal is to build a new research protocol to give insight in enzymatic reactions. This is original and innovative, and will as such contribute to Europe’s excellence. Through the integrated scientific and complementary skills training, it will offer much to my career development.
The role of metal ions and the protein environment in triphosphate hydrolysis and sulfur oxidation reactions, which are abundant and ubiquitous enzymatic reactions involved in e.g. signal and energy transduction will be untangled via quantitative molecular orbital (MO)-theory. The MO-model and its associated energy-decomposition approach, for which the host will offer a training, can make trends in reaction barriers transparent and is the current state of the art in explanatory chemistry. This approach is only marginally used to tackle the chemistry of enzymatic reactions and gives the project its originality and pioneering nature. Further, by studying the nature of the reaction barrier of sulfur oxidation reactions, I will pioneer the field of theoretical redox protein sulfur chemistry. Sulfur redox biology is being studied extensively by biochemists, but only marginally by theoreticians.
In conclusion, by studying representative proteins, this project translates fundamental chemical insights into biological relevance, giving the project its interdisciplinary nature.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

STICHTING VU
EU contribution
€ 183 469,80
Address
DE BOELELAAN 1105
1081 HV Amsterdam
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0