Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Visible-light-driven CO2 reduction to SynGas using water as electron and proton donor over a Z-scheme photoelectrochemical cell

Objective

The finite petroleum feedstock and the increased concentration of the greenhouse gas CO2 in the atmosphere have led to the concept of renewable CO2 utilization. The use of CO2 as a starting material for the chemical industry would not only relieve environmental pressures on our society, but it is also vastly abundant; with approximately 300 billion tons, CO2 is the most abundant carbon source in the Earth’s atmosphere. Therefore, a driver for investment in CO2 utilization will be the ability to maintain security in the supply of sustainable fuels and commodity chemicals that have traditionally relied on non-renewable petrochemical sources.
Currently, approximately 75% of the world’s energy demand is covered by fuels, while only 25% by electricity. Photovoltaics, wind and other renewable energy sources can only cover the electricity demand. There is currently no viable solution to produce fuels on a global scale in developed nations in a post-fossil era. This ambitious and innovative project tackles the challenge to produce renewable fuels through the conversion of CO2 to SynGas (CO + H2), which can be subsequently transformed into liquid hydrocarbons through the known Fischer-Tropsch process, and it would address the three quarters of the global energy demand.
Conventional heterogeneous catalysis, electrocatalysis and photocatalysis are presently the most commonly used methods of reducing CO2 to useful products. All of these techniques require an energetic input (thermal energy, electricity and light). The sun delivers solar energy to the Earth with a power of >120,000 TW, which greatly exceeds the current annual global energy consumption of ~15 TW, and is thus the most sustainable source of energy available to humanity.
The ultimate goal of this project is converting CO2 to SynGas with the use of solar light as energy source. In addition, water an extremely abundant, non-toxic and sustainable resource will be used as electron and proton donor.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
EU contribution
€ 231 283,20
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0