Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Sensing Quantum Information Correlations

Objective

"Quantum correlations are those supporting technologies such as quantum information processing. For realistic applications, one has to consider open quantum systems, that is, in contact with the classical world through lifetime and excitation. Quantum correlations are transferred through emitted photons, electrons, etc. and characterise the quantum structure of the system and its suitability as a quantum device. The state-of-the-art is the Hanbury Brown-Twiss two-photon counting, which is a particular case of the general problem.

At the speed of technological progress, it is now becoming possible to measure higher order correlations of quanta characterised in all their attributes. For instance, cross-correlating photons with fixed frequencies and arrival times is now a routine practice in most laboratories worldwide. The correct interpretation and mastering of such techniques will allow a robust implementation of quantum protocols.

Theoretically, the computation of such correlations is extremely complicated and tedious as it needs to keep in the calculation all the degrees of freedom for each carrier. I have recently developed a general formalism, called ""the sensing method"", conceptually transparent and improving computations by several orders of magnitude as compared to the previous methods. This allows to deal for the first time with complicated quantum systems, with many degrees of freedom and particles, and to compute Nth-order correlations, with N>2, at arbitrary times and frequencies.

The goal of the SQUIRELL project is to develop and disseminate this novel and interdisciplinary theoretical approach in a wide range of quantum systems (cavity QED, superconducting circuits, atomic and semiconductor systems, plasmonic, Bose-Einstein condensates, etc.), by analysing the physics made accessible by the sensing method, by supporting experiments on quantum correlations in a variety of fields and by exploiting correlations to improve and design new quantum devices."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSIDAD AUTONOMA DE MADRID
EU contribution
€ 86 685,30
Address
CALLE EINSTEIN 3 CIUDAD UNIV CANTOBLANCO RECTORADO
28049 MADRID
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0