Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Radiation and Tumour Blood Vessels

Objective

The tumour microenvironment plays a significant role in regulating tumour growth, metabolism, DNA repair, metastasis and response to therapy including radiation treatment. In particular, the oxygenation of a tumour greatly affects the response to ionizing radiation as hypoxic cells are more resistant to radiation then normoxic cells. Conversely radiation influences the microenvironment of the tumour by alterations in the tumour vasculature. With high single doses of radiation (>15Gy), vascular destruction is seen. At lower single doses or with daily fractionated doses (multiple smaller doses), there is little evidence of vascular destruction. Under some conditions tumour hypoxia is reduced after irradiation, potentially attributable to decreased interstitial pressure, increased perfusion and decreased oxygen consumption. Furthermore, apoptosis of the endothelial cells has been reported after tumour or intestinal irradiation. Attempts to enhance the efficacy of radiation therapy by using anti-angiogenic or anti-vascular agents however; have been limited by their transient nature. As this summary indicates, the effects of radiation on the tumour vasculature are still incompletely understood, but of substantial clinical importance. Therefore the aim of the proposed project is to delineate the vascular response in tumours to radiation. Direct observation of the vasculature during and after radiation with state of the art microscopic techniques should resolve many of these outstanding issues. Therefore we will a) develop experimental approaches to observe angiogenesis in murine tumours with video microscopy, b) determine the underlying mechanisms for vascular normalization and c) determine the nature of vascular response to radiation. These studies will help characterize the processes accounting for the vascular response to radiation and allow the development of strategies to enhance radiation therapy through this understanding.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 221 606,40
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0