Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Gold-catalysed dehydrogenative cross-coupling of arenes

Objective

The usually inert carbon-hydrogen (C-H) bond is present in nearly all synthetic and naturally occurring organic molecules. The modification of organic compounds through the direct functionalisation of C-H bonds is however a highly challenging process due to their poor reactivity and the difficulty of discriminating between the many C-H bonds present in most molecules. Nevertheless, catalytic C-H activation has emerged as an increasingly promising strategy for simple and atom-economical cross-coupling of organic compounds. Compared to current methodologies that require the use of pre-functionalized starting materials, the development of general and efficient catalytic C-H activation systems could significantly reduce the amount of waste generated in synthetic reactions by (1) using readily available starting materials (2) shortening reaction sequences and (3) avoiding the stoichiometric generation of metal salts default to synthesis that rely on the use of pre-functionalised building blocks.
This project aims at the development of catalytic systems for the formation of biaryls by the direct coupling of two arenes via double C-H activation. Such arylations require the selective breaking of two distinct C-H bonds followed by the subsequent C-C bond formaton. We will make use of the unique ability of gold complexes to discriminate between C-H bonds in different electronic environments depending on the oxidation state of the gold catalyst. Thus, we will develop catalytic cross-coupling processes proceeding via (1) gold(I) mediated C-H activation of electron poor arenes, (2) oxidation of the catalyst to gold(III) followed by gold(III) mediated C-H activation of electron rich arenes, and (3) C-C bond formation furnishing biaryl compounds. The described proposal will significantly contribute to the current state of the art cross-coupling methodologies and offer a direct and green approach to the synthesis of biaryl motifs.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE UNIVERSITY OF MANCHESTER
EU contribution
€ 221 606,40
Address
OXFORD ROAD
M13 9PL Manchester
United Kingdom

See on map

Region
North West (England) Greater Manchester Manchester
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0