Objective
The acceleration of high-energy particles at collisionless shocks in astrophysical plasmas is a common phenomenon in the Universe and takes place in a variety of systems, from the heliosphere up to the most distant cosmic sources. The best known example for such non-thermal particle populations are cosmic rays, but additional evidence for the existence of high energy particles comes from observations of non-thermal synchrotron and inverse Compton emission from several sources, as pulsar wind nebulae, jets from active galactic nuclei, gamma-ray bursts, and supernova remnants. In all these sources collisionless shocks are thought to be responsible for the conversion of a significant fraction of the flow energy into relativistic particles with power-law non-thermal spectra. The most popular candidate for particle energization at astrophysical shocks is the so-called diffusive shock acceleration mechanism (first-order Fermi mechanism), where charged particles gain energy by scattering back and forth between the converging upstream and downstream plasmas. In collisionless astrophysical plasmas the source of scattering is provided by magnetic turbulence rather than by Coulomb collisions. Efficient acceleration requires that particles repeatedly cross the shock. For the accelerated particles a power-law spectrum is the natural product of collisionless shock acceleration.
I propose to investigate the implications of shock acceleration in gamma-ray bursts and in supernova remnants and to set constraints on the acceleration mechanism. This research project consists of two parts, one concerning the acceleration of electrons at the external shocks of gamma-ray bursts and the resulting emission, and the other one focused on the acceleration of cosmic rays at the front shock of supernova remnants and their diffusion into the Galaxy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences theoretical physics particle physics
- natural sciences physical sciences astronomy galactic astronomy solar physics
- natural sciences physical sciences astronomy stellar astronomy supernova
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2013-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
91904 JERUSALEM
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.