Objective
The importance of controlling and understanding energy and heat flow, non-equilibrium processes and fluctuations at small length scales is rapidly gaining attention. This emerging field of nanoscale energy management, starts to play a crucial role in many solid-state device applications and its solution is a condition sine qua non for the adoption of future nanoelectronic devices. The need for energy management arises from new challenges brought by the quest of continuous performance improvements of nanoelectronic devices. The enhancement of the integration density of these devices increases the electronic performance but as the commercial field-effect-transistor approach the 10 nm regime, the thermal management becomes a serious issue.
The HeatProNano project aims to establish a comprehensive understanding and description of heat transport and local thermal conductivity at the nanoscale. Size-property relations will be studied considering the effects of surfaces and interfaces in order to elucidate the issues affecting power dissipation and allow a better design of future devices. To reach this goal, HeatProNano aims to measure, model, and exploit the transition from thermal equilibrium to local non-equilibrium and its impact for nanoscale energy management. The project will investigate the consequences of local non-equilibrium in structures with dimensions well below the mean free path of thermal phonons. The heat propagation and thermal conductivity on the nanoscale will be studied by a variety of experimental techniques considering long range transport over hundreds of micrometers down to beyond-state-of-the art resolution in the 10 nm-regime. Methods to achieve a controlled tailoring of the thermal conductivity on the nanoscale will be explored. The project therefore encompasses different materials (silicon, germanium, Si/Ge alloys, metal-oxides, and graphene) with strong relevance for existing ICT devices or high potential for future thermal management.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences physical sciences atomic physics
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2013-IEF
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
08193 BELLATERRA (BARCELONA)
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.