Objective
Currently available enzyme technology is insufficient to economically degrade plant biomass, and presumably will remain so whilst fundamental questions are inadequately answered, the most evident being: “how do microbes and their enzymes interact with plant cell walls?” Compounding these difficulties is the “cultivability bottleneck”. The microbes that harbor the answers to these questions are largely irrecoverable in isolate form, which restricts access to their genetic and metabolic machinery.
The present project will address these issues by applying a progressive interdisciplinary approach to study and compare natural and engineered digestive ecosystems that are linked together via overlapping phenotypic and functional traits (i.e. biomass degradation). The project aims to generate insight into diverse uncultured microbial lineages and uncover core enzyme systems for biomass degradation that are present in multiple environments. To achieve its objectives the project will employ a combination of predictive genome-reconstruction technologies, as well as metagenome-directed isolation strategies to target dominant and novel saccharolytic species. Furthermore we will develop and take advantage of advanced software for enzyme annotation and phylogenetic binning as it is being developed. Relevant genes identified from reconstructed genomes and/or transcriptome data for isolates will be cloned, over-expressed and their gene products tested using state-of-the-art carbohydrate microarray technologies, prior to being characterized in detail.
The project will complement existing activities at the PI’s university on (1) polysaccharide converting enzymes in a biorefining context, (2) the impact of intestinal fiber deconstruction on satiety and (3) enhanced production of biogas. We expect to unravel novel aspects of the microbial ecology within these systems/processes. Furthermore, it is envisaged that novel isolates and enzymes will enter into live bioenergy projects.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences software
- natural sciences biological sciences biochemistry biomolecules carbohydrates
- natural sciences biological sciences ecology ecosystems
- natural sciences biological sciences genetics genomes
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
1433 As
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.