Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Mesoscopic THz impedance microscopy for quantum materials

Objective

An important frontier in condensed matter physics is the understanding of quantum materials in which different ground states compete, leading to electronic inhomogeneity and the concept of ‘quantum electronic liquid crystals’. The challenge for experiments is to measure the local electrodynamic properties in materials, which are electronically inhomogeneous, but atomically homogeneous.
I propose a new technique to determine these local variations of the electronic properties. The central objective is to measure with nanometer-scale spatial resolution the frequency-dependent electrodynamic properties, such as complex dielectric constant and complex conductivity of quantum materials at frequencies in the several hundreds of GHz range. The method is derived from the recent progress in astronomical instruments for the submillimeter (hundreds of GHz to THz) frequency band. This progress, to which I contributed extensively, is driven by the desire to study the universe. Now, with this technology and expertise in hand, the disciplinary boundaries can be crossed once more and directed to the other challenging frontier of quantum materials. With this instrument it will become possible to determine the local (and possibly frequency-dependent) electromagnetic properties, such as the dielectric constant and conductivity, for a range of materials.
Through this technique, I will make it possible to study the local properties of new materials and even to get access to the local energy-scales of their excitations. It is clear that the program is ambitious and risky, but if successful it provides a major step forward in experiments to reveal the various electronic states of quantum materials and a new scanning-probe technique operating in a new frequency range.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-ADG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

TECHNISCHE UNIVERSITEIT DELFT
EU contribution
€ 2 451 266,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0