Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

The genomic architecture of speciation in tropical butterflies

Objective

These are exciting times for speciation research with a wealth of recent theoretical and empirical advances, but there is much we still do not understand. The Heliconius butterflies offer an excellent opportunity to gain novel insights into the genetic architecture of speciation and its genomic consequences, by integrating genomic data with the well-studied ecological and behavioural processes that underlie speciation in this group. Here I will bring together two lines of recent research in speciation, a) the evolution of genetic architectures, such as clustering of barrier genes, that facilitate divergence in the face of gene flow and b) the genomic patterns of divergence. First, I will apply large-scale whole genome resequencing to study divergence and gene flow between species, and test whether speciation proceeds through divergence of gradually expanding genomic islands under divergent selection. I will also develop novel theory to interpret these patterns. Second, I will test whether loci controlling behavioural and ecological traits that cause reproductive isolation are clustered in the genome, using a genome-wide quantitative trait analysis of reproductive isolation in two hybridizing species pairs. Third, I will investigate the role of chromosomal rearrangements in reducing between-species recombination rate where species hybridize, and directly study their influence on recombination rate. Overall, the project will integrate information on the distribution of genes controlling ecological, behavioural and genetic differences between species with patterns of recombination, in order to understand the process of genome divergence and adaptive radiation. This work will offer new insights into speciation, a process fundamental to evolution and biodiversity, but also has wider implications for our understanding of the processes that drive genome evolution.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-ADG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
EU contribution
€ 2 499 988,00
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0