Objective
"Sorin Popa's deformation/rigidity theory has lead to an enormous progress in our understanding of von Neumann algebras coming from discrete groups and their actions on probability spaces. In a five year long collaboration with Sorin Popa, we solved many long-standing open problems in this area, including superrigidity theorems for group measure space II_1 factors, results on the possible fundamental groups of II_1 factors, and uniqueness theorems for Cartan subalgebras.
In the first part of the project, we want to establish new unique Cartan decomposition theorems for II_1 factors coming from hitherto intractable groups. Using methods coming from Lie groups, ergodic theory and geometric group theory, we want to reach such results for lattices in higher rank simple Lie groups, and for countable groups with nonvanishing L^2-Betti numbers. An important intermediate step will be the unique Cartan decomposition of Bernoulli crossed products.
Secondly we want to prove classification theorems for type III factors that are equally strong as the existing results for the type II_1 case. This includes a complete classification of the noncommutative Bernoulli shifts of the free groups and will require an intricate combination of Tomita/Takesaki and deformation/rigidity theory.
The methods developed so far bring within reach an attack on two of the most important open problems in operator algebras and functional analysis: the free group factor problem and Connes's rigidity conjecture. The exact progress on these problems is of course unforeseeable, but it is sure that the research on these problems will lead to an even deeper interaction between diverse areas of mathematics as operator algebras, group theory, functional analysis, ergodic theory, and descriptive set theory. Intermediate goals are the classification of natural classes of group von Neumann algebras, including those coming from Baumslag-Solitar groups, wreath product groups, and other families of discrete groups."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences mathematics pure mathematics discrete mathematics mathematical logic
- natural sciences mathematics pure mathematics mathematical analysis functional analysis operator algebra
- natural sciences mathematics pure mathematics algebra algebraic geometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-CoG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
3000 Leuven
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.