Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Crystal channeling to extract a high energy hadron beam from an accelerator

Objective

A new generation of parasitic beam extraction of high energy particles from an accelerator is proposed in CRYSBEAM. Instead of massive magnetic kickers, bent thin crystals trapping particles within the crystal lattice planes are used. This type of beam manipulation opens new fields of investigation of fundamental interactions between particles and of coherent interactions between particles and matter. An experiment in connection to Ultra High Energy Cosmic Rays study in Earth’s high atmosphere can be conducted.
Several TeV energy protons or ions are deflected towards a chosen target by the bent lattice planes only when the lattice planes are parallel to the incoming particles direction.
The three key ingredients of CRYSBEAM are:
- a goniometer based on piezoelectric devices that orients a bent finely-polished low-miscut silicon crystal with a high resolution and repeatability, monitoring its position with synthetic diamond sensors. Novel procedures in crystal manufacturing & testing and cutting-edge mechanical solutions for motion technology in vacuum are developed;
- a silica screen that measures the deflected particles via Cherenkov radiation emission in micrometric optical waveguides. These are obtained with an ultra-short laser micro-machining technique as for photonic devices used in quantum optics and quantum computing. The screen is a direct beam-imaging detector for a high radiation dose environment;
- a smart absorber, which simulates the Earth’s atmosphere, where particles are smashed and secondary showers are initiated. This sets the path to measure hadronic cross sections at an energy relevant for cosmic rays investigation.
The R&D for the various components of such a system are carried out within this project and direct tests at CERN Super Proton Synchrotron to be performed prior to the final installation in the Large Hadron Collider at CERN are proposed. A new concept of particle accelerator operations will be finally set in place.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

ISTITUTO NAZIONALE DI FISICA NUCLEARE
EU contribution
€ 1 989 746,00
Address
Via Enrico Fermi 54
00044 Frascati
Italy

See on map

Region
Centro (IT) Lazio Roma
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0