Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

MICROMACHINED OPTOMECHANICAL DEVICES: looking at cells, tissues, and organs ... with a gentle touch

Objective

Every time we grab an object to look at its geometrical details or to feel if it is hard or soft, we are ineluctably confronted with the limits of our senses. Behind its appearances, the object may still hide information that, encrypted in its microscopic features, remains undetected to our macroscopic assessment. In life sciences, those limits are more than just frustrating: they are an obstacle to study and detect life threatening conditions. Many different instruments may overcome those limits, but the vast majority of them rely either on “sight” (optics) or “touch” (mechanics) separately. On the contrary, I believe that it is from the combination of those two “senses” that we have more chances to tackle the future challenges of cell biology, tissue engineering, and medical diagnosis.

Inspired by this tantalizing perspective, and supported by a technology that I have brought from blackboard to market, I have now designed a scientific program to breach into the microscopic scale via an unbeaten path. The program develops along three projects addressing the three most relevant scales in life sciences: cells, tissues, and organs. In the first project, I will design and test a new optomechanical probe to investigate how a prolonged mechanical load on a brain cell of a living animal may trigger alterations in its Central Nervous System. With the second project, I will develop an optomechanical tactile instrument that can assess how subsurface tissues deform in response to a mechanical stroke – a study that may change the way physicians look at tissue classification. For the third project, I will deliver an acousto-optical gas trace sensors so compact that can penetrate inside the lungs of an adult patient, where it could be used for early detection of pulmonary life threatening diseases. Each project represents an opportunity to open an entire new field, where optics and micromechanics are combined to extend our senses well beyond their natural limits.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

STICHTING VU
EU contribution
€ 1 999 221,00
Address
DE BOELELAAN 1105
1081 HV Amsterdam
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0