Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

An artificial water-soluble photosystem by protein design

Objective

This project aims at producing a fully functional light energy conversion system that is inspired by, but does not necessarily mimic, the fundamental solar energy conversion unit of natural photosynthesis – the photosystem. This is a formidable challenge that can be met with thorough understanding of biological energy and electron transfer processes, and the growing capabilities of computational protein design. Here, this knowledge and capabilities will be further developed and utilized for the design and construction of multi-cofactor, multi-subunit protein complexes with photosystem functionality. These will be designed to efficiently capture light in the visible and near infrared range, exploit it for driving the oxidation of a molecular redox carrier at one end, and providing highly reducing electrons at the other end.
Our general goal will be achieved by designing protein-cofactor complexes that will facilitate light-driven electron- and excitation energy-transfer that will make up the reaction center, and light harvesting modules, respectively. Constructing protein scaffolds that will assemble and organize arrays of multiple pigments, and chains of redox cofactors are significant challenges at the forefront of the field of protein de novo design, and current theories of biological energy and electron transfer.
Success will set a new standard, well beyond the current state of the art, for our ability to use computational protein design methods for assembling functional protein-cofactor complexes. These can be used as benchmarks to test and validate the engineering principles of biological energy conversion systems, as well as new ideas about their evolution. Practically, it will open new and exciting technological possibilities for constructing artificial solar energy conversion systems from biological building blocks, which may enable their introduction into living systems and the construction of novel bioreactors for light driven fuel production.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

MIGAL GALILEE RESEARCH INSTITUTE LTD
EU contribution
€ 1 736 331,00
Address
SOUTH INDUSTRIAL ZONE
11016 KIRYAT SHEMONA
Israel

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0