Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Mechanisms of Chromatin-based Epigenetic Inheritance

Objective

Epigenetic mechanisms heritably maintain gene expression states and chromosome organization across cell division. These include chromatin-based factors that are propagated independent of local DNA sequence elements, and are critical for normal development and prevent reprogramming, e.g. during induction of pluripotency. We focus on the role of nucleosomes, the histone-DNA complexes that make up chromatin. While prominently implicated in epigenetic memory, how histones and their local modifications can actually be inherited is largely unknown. We take aim at three fundamental aspects that we argue are central to this problem: stability of the epigenetic mark, self-templated duplication, and cell cycle coupling.
We developed a unique pulse-labeling strategy to determine whether silent and active chromatin can be inherited and how this relates to transcription, both in cancer cells and in vitro differentiating stem cells. By coupling this strategy to an imaging-based RNAi screen we aim to identify components controlling nucleosome assembly and heritability. We achieve this by focusing on the human centromere, the chromosome locus essential for chromosome segregation which serves as an ideal model for epigenetic memory. This locus is specified by nucleosomes carrying the histone H3 variant, CENP-A that we have previously shown to be highly stable in cycling cells and to be replicated in a strict cell cycle coupled manner. We build on our previous successes to uncover the molecular mechanism and cellular consequences of the coupling between CENP-A propagation and the cell cycle which we postulate, ensures proper centromere size and mitotic fidelity. Furthermore, by genome engineering we developed a strategy to delete an endogenous centromere to determine how centromeres can form de novo and how CENP-A chromatin, once formed, can template its own duplication. With this multi-facetted approach we aim to uncover general mechanistic principles of chromatin-based memory.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

FUNDACAO CALOUSTE GULBENKIAN
EU contribution
€ 1 621 400,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0