Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Mechanotransduction in Cell-to-Cell Communication

Objective

Cell-to-cell communication pathways coordinate cellular functions in multicellular organisms. Cells that are nearest neighbours can communicate through specific interactions between ligand and receptor proteins present in their respective cell membranes. The objective of this research program is to address the hypothesis that the physical context of the ligand/receptor interaction contributes to defining the fundamental mechanisms of action of cell-to-cell communication pathways and their cellular outcomes.
The research program relies on the development of tools that provide well-defined physical inputs to cells, not confounded by simultaneous changes in chemical inputs. Therefore, beyond state-of-the-art developments in nanotechnology are here integrated with cell biology. In particular, DNA origami technology is applied to the development of ligand nanoclusters with customized spatial organization and mechanical properties. These ligand nanoclusters are used to probe the roles of physical properties of the ligand presentation on the activation of intracellular signalling pathways.
We will focus on the ephrin/Eph cell-to-cell communication pathway, which regulates embryonic development and the homeostasis of adult organs. ephrin/Eph signalling is commonly disrupted in cancer, showing tumour suppressing or tumour promoting character. The mechanisms that generate the diversity of outcomes of the ephrin/Eph pathway are largely unknown. We will use DNA origami/ephrin ligand nanoclusters to investigate whether the spatial organization and mechanical properties of ephrin ligand assemblies impact Eph receptor function and contribute to generating diversity in the pathway. Our novel approach is readily transferrable to the study of other signalling pathways. We aim to generate a knowledge foundation for the roles of mechanotransduction, the conversion of physical to biochemical signals, in cell-to-cell communication mediated by membrane-bound ligands and receptors.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

KAROLINSKA INSTITUTET
EU contribution
€ 2 292 100,00
Address
NOBELS VAG 5
171 77 STOCKHOLM
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0